{ "id": "1209.5822", "version": "v3", "published": "2012-09-26T03:23:46.000Z", "updated": "2014-04-09T22:47:13.000Z", "title": "Some quantitative unique continuation results for eigenfunctions of the magnetic Schrödinger operator", "authors": [ "Blair Davey" ], "comment": "Final version as it appears in Communications in Partial Differential Equations", "journal": "Communications in Partial Differential Equations. 39(5), 876-945", "doi": "10.1080/03605302.2013.796380", "categories": [ "math.AP" ], "abstract": "We prove quantitative unique continuation results for solutions of $-\\Delta u + W\\cdot \\nabla u + Vu = \\lambda u$, where $\\lambda \\in \\mathbb{C}$ and $V$ and $W$ are complex-valued decaying potentials that satisfy $|V(x)| \\lesssim \\langle x\\rangle^{-N}$ and $|W(x)| \\lesssim \\langle x\\rangle^{-P}$. For $M(R) = \\inf_{|x_0| = R}||u||_{L^2(B_1(x_0))}$, we show that if the solution $u$ is non-zero, bounded, and $u(0) = 1$, then $M(R) \\gtrsim \\exp(-C R^{\\beta_0}(\\log R)^{A( R)})$, where $\\beta_0 = \\max\\{2 - 2P, \\frac{4-2N}{3}, 1\\}$. Under certain conditions on $N$, $P$ and $\\lambda$, we construct examples (some of which are in the style of Meshkov) to prove that this estimate for $M(R)$ is sharp. That is, we construct functions $u, V$ and $W$ such that $-\\Delta u + W\\cdot \\nabla u + Vu = \\lambda u$, $|V(x)| \\lesssim \\langle x\\rangle^{-N}$, $|W(x)| \\lesssim \\langle x\\rangle^{-P}$ and $|u(x)| \\lesssim \\exp(-c|x|^{\\beta_0}(\\log |x|)^C)$.", "revisions": [ { "version": "v3", "updated": "2014-04-09T22:47:13.000Z" } ], "analyses": { "subjects": [ "35J10", "35J15", "35B60" ], "keywords": [ "quantitative unique continuation results", "magnetic schrödinger operator", "eigenfunctions", "construct examples", "construct functions" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1209.5822D" } } }