{ "id": "1209.5764", "version": "v2", "published": "2012-09-25T20:55:37.000Z", "updated": "2012-10-11T15:36:32.000Z", "title": "Threshold functions for distinct parts: revisiting Erdos-Lehner", "authors": [ "Éva Czabarka", "Matteo Marsili", "László Székely" ], "categories": [ "math.CO" ], "abstract": "We study four problems: put $n$ distinguishable/non-distinguishable balls into $k$ non-empty distinguishable/non-distinguishable boxes randomly. What is the threshold function $k=k(n) $ to make almost sure that no two boxes contain the same number of balls? The non-distinguishable ball problems are very close to the Erd\\H os--Lehner asymptotic formula for the number of partitions of the integer $n$ into $k$ parts with $k=o(n^{1/3})$. The problem is motivated by the statistics of an experiment, where we only can tell whether outcomes are identical or different.", "revisions": [ { "version": "v2", "updated": "2012-10-11T15:36:32.000Z" } ], "analyses": { "subjects": [ "05A17", "05A18", "05A16", "05D40" ], "keywords": [ "threshold function", "distinct parts", "revisiting erdos-lehner", "os-lehner asymptotic formula", "boxes contain" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1209.5764C" } } }