{ "id": "1209.5640", "version": "v2", "published": "2012-09-25T15:15:33.000Z", "updated": "2018-06-05T17:26:43.000Z", "title": "Partial Regularity for optimal transport maps", "authors": [ "Guido De Philippis", "Alessio Figalli" ], "categories": [ "math.AP" ], "abstract": "We prove that, for general cost functions on $\\mathbb{R}^n$, or for the cost $d^2/2$ on a Riemannian manifold, optimal transport maps between smooth densities are always smooth outside a closed singular set of measure zero.", "revisions": [ { "version": "v1", "updated": "2012-09-25T15:15:33.000Z", "comment": null, "journal": null, "doi": null }, { "version": "v2", "updated": "2018-06-05T17:26:43.000Z" } ], "analyses": { "keywords": [ "optimal transport maps", "partial regularity", "general cost functions", "measure zero", "riemannian manifold" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }