{ "id": "1209.5596", "version": "v2", "published": "2012-09-25T13:04:46.000Z", "updated": "2017-07-10T15:45:52.000Z", "title": "Entropy of homeomorphisms on unimodal inverse limit spaces", "authors": [ "Henk Bruin", "Sonja Stimac" ], "journal": "Nonlinearity, Volume 26, Number 4, April 2013, 991 - 1000", "doi": "10.1088/0951-7715/26/4/991", "categories": [ "math.DS" ], "abstract": "We prove that every self-homeomorphism $h : K_s \\to K_s$ on the inverse limit space $K_s$ of the tent map $T_s$ with slope $s \\in (\\sqrt 2, 2]$ has topological entropy $\\htop(h) = |R| \\log s$, where $R \\in \\Z$ is such that $h$ and $\\sigma^R$ are isotopic. Conclusions on the possible values of the entropy of homeomorphisms of the inverse limit space of a (renormalizable) quadratic map are drawn as well.", "revisions": [ { "version": "v1", "updated": "2012-09-25T13:04:46.000Z", "comment": null }, { "version": "v2", "updated": "2017-07-10T15:45:52.000Z" } ], "analyses": { "keywords": [ "unimodal inverse limit spaces", "homeomorphisms", "tent map", "quadratic map", "topological entropy" ], "tags": [ "journal article" ], "publication": { "journal": "Nonlinearity", "year": 2013, "month": "Apr", "volume": 26, "number": 4, "pages": 991, "publisher": "IOP" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013Nonli..26..991B" } } }