{ "id": "1209.5458", "version": "v1", "published": "2012-09-24T23:52:38.000Z", "updated": "2012-09-24T23:52:38.000Z", "title": "Estimates of Eigenvalues and Eigenfunctions in Periodic Homogenization", "authors": [ "Carlos E. Kenig", "Fanghua Lin", "Zhongwei Shen" ], "comment": "25 pages", "categories": [ "math.AP" ], "abstract": "For a family of elliptic operators with rapidly oscillating periodic coefficients, we study the convergence rates for Dirichlet eigenvalues and bounds of the normal derivatives of Dirichlet eigenfunctions. The results rely on an $O(\\epsilon)$ estimate in $H^1$ for solutions with Dirichlet condition.", "revisions": [ { "version": "v1", "updated": "2012-09-24T23:52:38.000Z" } ], "analyses": { "keywords": [ "periodic homogenization", "rapidly oscillating periodic coefficients", "convergence rates", "dirichlet eigenvalues", "normal derivatives" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1209.5458K" } } }