{ "id": "1209.5309", "version": "v3", "published": "2012-09-24T15:45:24.000Z", "updated": "2013-07-04T12:48:44.000Z", "title": "Minimal modularity lifting for GL2 over an arbitrary number field", "authors": [ "David Hansen" ], "comment": "8 pages; final version, to appear in Math. Res. Letters", "categories": [ "math.NT", "math.AC" ], "abstract": "We prove a modularity lifting theorem for minimally ramified deformations of two-dimensional odd Galois representations, over an arbitrary number field. The main ingredient is a generalization of the Taylor-Wiles method in which we patch complexes rather than modules.", "revisions": [ { "version": "v3", "updated": "2013-07-04T12:48:44.000Z" } ], "analyses": { "keywords": [ "arbitrary number field", "minimal modularity lifting", "two-dimensional odd galois representations", "main ingredient", "modularity lifting theorem" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1209.5309H" } } }