{ "id": "1209.4990", "version": "v3", "published": "2012-09-22T12:27:22.000Z", "updated": "2012-12-09T03:13:24.000Z", "title": "On the eigenfunctions of the complex Ornstein-Uhlenbeck operators", "authors": [ "Yong Chen", "Yong Liu" ], "comment": "16pages", "categories": [ "math.PR", "math.FA" ], "abstract": "Starting from the 1-dimensional complex-valued Ornstein-Uhlenbeck process, we present two natural ways to imply the associated eigenfunctions of the 2-dimensional normal Ornstein-Uhlenbeck operators in the complex Hilbert space $L_{\\Cnum}^2(\\mu)$. We call the eigenfunctions Hermite-Laguerre-Ito polynomials. In addition, the Mehler summation formula for the complex process are shown.", "revisions": [ { "version": "v3", "updated": "2012-12-09T03:13:24.000Z" } ], "analyses": { "subjects": [ "60H10", "60H07", "60G15" ], "keywords": [ "complex ornstein-uhlenbeck operators", "mehler summation formula", "eigenfunctions hermite-laguerre-ito polynomials", "complex hilbert space", "normal ornstein-uhlenbeck operators" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1209.4990C" } } }