{ "id": "1209.4669", "version": "v1", "published": "2012-09-20T21:12:02.000Z", "updated": "2012-09-20T21:12:02.000Z", "title": "Ricci curvature and monotonicity for harmonic functions", "authors": [ "Tobias Holck Colding", "William P. Minicozzi II" ], "categories": [ "math.DG", "math.AP" ], "abstract": "In this paper we generalize the monotonicity formulas of [C] for manifolds with nonnegative Ricci curvature. Monotone quantities play a key role in analysis and geometry; see, e.g., [A], [CM1] and [GL] for applications of monotonicity to uniqueness. Among the applications here is that level sets of Green's function on open manifolds with nonnegative Ricci curvature are asymptotically umbilic.", "revisions": [ { "version": "v1", "updated": "2012-09-20T21:12:02.000Z" } ], "analyses": { "keywords": [ "harmonic functions", "nonnegative ricci curvature", "monotone quantities play", "open manifolds", "monotonicity formulas" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1209.4669H" } } }