{ "id": "1209.3527", "version": "v3", "published": "2012-09-16T22:54:59.000Z", "updated": "2015-01-26T02:26:34.000Z", "title": "K3 surfaces and equations for Hilbert modular surfaces", "authors": [ "Noam Elkies", "Abhinav Kumar" ], "comment": "83 pages. Final version", "journal": "Algebra and Number Theory 8:10 (2014), 2297-2411", "doi": "10.2140/ant.2014.8.2297", "categories": [ "math.NT", "math.AG" ], "abstract": "We outline a method to compute rational models for the Hilbert modular surfaces Y_{-}(D), which are coarse moduli spaces for principally polarized abelian surfaces with real multiplication by the ring of integers in Q(sqrt{D}), via moduli spaces of elliptic K3 surfaces with a Shioda-Inose structure. In particular, we compute equations for all thirty fundamental discriminants D with 1 < D < 100, and analyze rational points and curves on these Hilbert modular surfaces, producing examples of genus-2 curves over Q whose Jacobians have real multiplication over Q.", "revisions": [ { "version": "v2", "updated": "2013-11-11T06:42:58.000Z", "comment": "83 pages", "journal": null, "doi": null }, { "version": "v3", "updated": "2015-01-26T02:26:34.000Z" } ], "analyses": { "subjects": [ "11F41", "14G35", "14J28", "14J27" ], "keywords": [ "hilbert modular surfaces", "real multiplication", "coarse moduli spaces", "thirty fundamental discriminants", "analyze rational points" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 83, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1209.3527E" } } }