{ "id": "1209.3393", "version": "v1", "published": "2012-09-15T11:49:36.000Z", "updated": "2012-09-15T11:49:36.000Z", "title": "A regularity criterion for the weak solutions to the Navier-Stokes-Fourier system", "authors": [ "Eduard Feireisl", "Antonin Novotny", "Yongzhong Sun" ], "categories": [ "math.AP" ], "abstract": "We show that any weak solution to the full Navier-Stokes-Fourier system emanating from the data belonging to the Sobolev space W^{3,2} remains regular as long as the velocity gradient is bounded. The proof is based on the weak-strong uniqueness property and parabolic a priori estimates for the local strong solutions.", "revisions": [ { "version": "v1", "updated": "2012-09-15T11:49:36.000Z" } ], "analyses": { "keywords": [ "weak solution", "regularity criterion", "local strong solutions", "weak-strong uniqueness property", "full navier-stokes-fourier system emanating" ], "tags": [ "journal article" ], "publication": { "doi": "10.1007/s00205-013-0697-6", "journal": "Archive for Rational Mechanics and Analysis", "year": 2014, "month": "Apr", "volume": 212, "number": 1, "pages": 219 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014ArRMA.212..219F" } } }