{ "id": "1209.2854", "version": "v2", "published": "2012-09-13T11:23:16.000Z", "updated": "2014-12-04T04:59:52.000Z", "title": "Symplectic and Isometric SL(2,R) invariant subbundles of the Hodge bundle", "authors": [ "Artur Avila", "Alex Eskin", "Martin Moeller" ], "comment": "23 pages. To appear in Crelle's journal", "categories": [ "math.DS", "math.AG", "math.GT" ], "abstract": "Suppose N is an affine SL(2,R)-invariant submanfold of the moduli space of pairs (M,w) where M is a curve, and w is a holomorphic 1-form on M. We show that the Forni bundle of N (i.e. the maximal SL(2,R)-invariant isometric subbundle of the Hodge bundle of N) is always flat and is always orthogonal to the tangent space of N. As a corollary, it follows that the Hodge bundle of N is semisimple.", "revisions": [ { "version": "v1", "updated": "2012-09-13T11:23:16.000Z", "comment": "16 pages", "journal": null, "doi": null }, { "version": "v2", "updated": "2014-12-04T04:59:52.000Z" } ], "analyses": { "keywords": [ "hodge bundle", "isometric sl", "invariant subbundles", "symplectic", "affine sl" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1209.2854A" } } }