{ "id": "1209.2404", "version": "v1", "published": "2012-09-11T19:32:47.000Z", "updated": "2012-09-11T19:32:47.000Z", "title": "On the Best Upper Bound for Permutations Avoiding A Pattern of a Given Length", "authors": [ "Miklos Bona" ], "comment": "12 pages", "categories": [ "math.CO" ], "abstract": "Numerical evidence suggests that certain permutation patterns of length k are easier to avoid than any other patterns of that same length. We prove that these patterns are avoided by no more than (2.25k^2)^n permutations of length n. In light of this, we conjecture that no pattern of length k is avoided by more than that many permutations of length n.", "revisions": [ { "version": "v1", "updated": "2012-09-11T19:32:47.000Z" } ], "analyses": { "subjects": [ "05A15", "05A16" ], "keywords": [ "best upper bound", "permutations avoiding", "permutation patterns", "numerical evidence" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1209.2404B" } } }