{ "id": "1209.2224", "version": "v2", "published": "2012-09-11T05:38:21.000Z", "updated": "2014-05-18T10:11:33.000Z", "title": "Equilibrium measures for the Hénon map at the first bifurcation: uniqueness and geometric/statistical properties", "authors": [ "Samuel Senti", "Hiroki Takahasi" ], "comment": "39 pages, 8 figures. Ergodic Theory and Dynamical Systems, to appear", "categories": [ "math.DS" ], "abstract": "For strongly dissipative H\\'enon maps at the first bifurcation where the uniform hyperbolicity is destroyed by the formation of tangencies inside the limit set, we establish a thermodynamic formalism, i.e., prove the existence and uniqueness of an invariant probability measure which maximizes the free energy associated with a non continuous geometric potential $-t\\log J^u$, where $t\\in\\mathbb R$ is in a certain large interval and $J^u$ is the Jacobian in the unstable direction. We obtain geometric and statistical properties of these measures.", "revisions": [ { "version": "v2", "updated": "2014-05-18T10:11:33.000Z" } ], "analyses": { "subjects": [ "37D25", "37D35", "37D45" ], "keywords": [ "first bifurcation", "equilibrium measures", "hénon map", "geometric/statistical properties", "uniqueness" ], "note": { "typesetting": "TeX", "pages": 39, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1209.2224S" } } }