{ "id": "1209.1799", "version": "v1", "published": "2012-09-09T13:40:02.000Z", "updated": "2012-09-09T13:40:02.000Z", "title": "A class of index transforms generated by the Mellin and Laplace operators", "authors": [ "Semyon Yakubovich" ], "categories": [ "math.CA" ], "abstract": "Classical integral representation of the Mellin type kernel in terms of the Laplace integral gives an idea to construct a new class of non-convolution (index) transforms. Particular examples give the Kontorovich-Lebedev-like transformation and new transformations with hypergeometric functions as kernels. Mapping properties and inversion formulas are obtained. Finally we prove a new inversion theorem for the modified Kontorovich-Lebedev transform", "revisions": [ { "version": "v1", "updated": "2012-09-09T13:40:02.000Z" } ], "analyses": { "subjects": [ "44A15", "33C05", "33C10", "33C15" ], "keywords": [ "index transforms", "laplace operators", "mellin type kernel", "integral representation", "laplace integral" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1209.1799Y" } } }