{ "id": "1209.1017", "version": "v2", "published": "2012-09-05T15:38:34.000Z", "updated": "2013-05-31T13:18:32.000Z", "title": "A lower bound on the blow-up rate for the Davey-Stewartson system on the torus", "authors": [ "Nicolas Godet" ], "categories": [ "math.AP" ], "abstract": "We consider the hyperbolic-elliptic version of the Davey-Stewartson system with cubic nonlinearity posed on the two dimensional torus. A natural setting for studying blow up solutions for this equation takes place in $H^s, 1/2 < s < 1$. In this paper, we prove a lower bound on the blow up rate for these regularities.", "revisions": [ { "version": "v2", "updated": "2013-05-31T13:18:32.000Z" } ], "analyses": { "keywords": [ "lower bound", "davey-stewartson system", "blow-up rate", "hyperbolic-elliptic version", "dimensional torus" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013AnIHP..30..691G" } } }