{ "id": "1209.0950", "version": "v1", "published": "2012-09-05T12:47:32.000Z", "updated": "2012-09-05T12:47:32.000Z", "title": "Normalized solutions of nonlinear Schrödinger equations", "authors": [ "Thomas Bartsch", "Sébastien de Valeriola" ], "categories": [ "math.AP" ], "abstract": "We consider the problem -\\Delta u - g(u) = \\lambda u, u \\in H^1(\\R^N), \\int_{\\R^N} u^2 = 1, \\lambda\\in\\R, in dimension $N\\ge2$. Here $g$ is a superlinear, subcritical, possibly nonhomogeneous, odd nonlinearity. We deal with the case where the associated functional is not bounded below on the $L^2$-unit sphere, and we show the existence of infinitely many solutions.", "revisions": [ { "version": "v1", "updated": "2012-09-05T12:47:32.000Z" } ], "analyses": { "subjects": [ "35J60", "35P30", "58E05" ], "keywords": [ "nonlinear schrödinger equations", "normalized solutions", "odd nonlinearity", "unit sphere", "associated functional" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1209.0950B" } } }