{ "id": "1209.0387", "version": "v1", "published": "2012-09-03T15:34:20.000Z", "updated": "2012-09-03T15:34:20.000Z", "title": "Global $L^{p}$ estimates for degenerate Ornstein-Uhlenbeck operators with variable coefficients", "authors": [ "Marco Bramanti", "Giovanni Cupini", "Ermanno Lanconelli", "Enrico Priola" ], "categories": [ "math.AP" ], "abstract": "We consider a class of degenerate Ornstein-Uhlenbeck operators in $\\mathbb{R}^{N}$, of the kind [\\mathcal{A}\\equiv\\sum_{i,j=1}^{p_{0}}a_{ij}(x) \\partial_{x_{i}x_{j}}^{2}+\\sum_{i,j=1}^{N}b_{ij}x_{i}\\partial_{x_{j}}%] where $(a_{ij})$ is symmetric uniformly positive definite on $\\mathbb{R}^{p_{0}}$ ($p_{0}\\leq N$), with uniformly continuous and bounded entries, and $(b_{ij})$ is a constant matrix such that the frozen operator $\\mathcal{A}_{x_{0}}$ corresponding to $a_{ij}(x_{0})$ is hypoelliptic. For this class of operators we prove global $L^{p}$ estimates ($1