{ "id": "1209.0154", "version": "v2", "published": "2012-09-02T07:44:09.000Z", "updated": "2013-10-22T11:04:16.000Z", "title": "Asymptotically hyperbolic manifolds with small mass", "authors": [ "Mattias Dahl", "Romain Gicquaud", "Anna Sakovich" ], "journal": "Commun. Math. Phys. 325, 757-801 (2014)", "doi": "10.1007/s00220-013-1827-6", "categories": [ "math.DG", "gr-qc" ], "abstract": "For asymptotically hyperbolic manifolds of dimension $n$ with scalar curvature at least equal to $-n(n-1)$ the conjectured positive mass theorem states that the mass is non-negative, and vanishes only if the manifold is isometric to hyperbolic space. In this paper we study asymptotically hyperbolic manifolds which are also conformally hyperbolic outside a ball of fixed radius, and for which the positive mass theorem holds. For such manifolds we show that the conformal factor tends to one as the mass tends to zero.", "revisions": [ { "version": "v2", "updated": "2013-10-22T11:04:16.000Z" } ], "analyses": { "subjects": [ "53C21", "83C05", "83C30" ], "keywords": [ "small mass", "conjectured positive mass theorem states", "study asymptotically hyperbolic manifolds", "positive mass theorem holds", "conformal factor tends" ], "tags": [ "journal article" ], "publication": { "publisher": "Springer", "journal": "Communications in Mathematical Physics", "year": 2014, "month": "Jan", "volume": 325, "number": 2, "pages": 757 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "inspire": 1184155, "adsabs": "2014CMaPh.325..757D" } } }