{ "id": "1208.6410", "version": "v1", "published": "2012-08-31T07:26:10.000Z", "updated": "2012-08-31T07:26:10.000Z", "title": "Convergence of a fully discrete finite difference scheme for the Korteweg-de Vries equation", "authors": [ "Helge Holden", "Ujjwal Koley", "Nils Henrik Risebro" ], "categories": [ "math.NA", "math.AP" ], "abstract": "We prove convergence of a fully discrete finite difference scheme for the Korteweg--de Vries equation. Both the decaying case on the full line and the periodic case are considered. If the initial data $u|_{t=0}=u_0$ is of high regularity, $u_0\\in H^3(\\R)$, the scheme is shown to converge to a classical solution, and if the regularity of the initial data is smaller, $u_0\\in L^2(\\R)$, then the scheme converges strongly in $L^2(0,T;L^2_{\\mathrm{loc}}(\\R))$ to a weak solution.", "revisions": [ { "version": "v1", "updated": "2012-08-31T07:26:10.000Z" } ], "analyses": { "subjects": [ "65M12", "35Q20", "65M06" ], "keywords": [ "fully discrete finite difference scheme", "korteweg-de vries equation", "convergence", "initial data", "scheme converges" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1208.6410H" } } }