{ "id": "1208.6374", "version": "v1", "published": "2012-08-31T06:05:58.000Z", "updated": "2012-08-31T06:05:58.000Z", "title": "Lagrangian flows for vector fields with gradient given by a singular integral", "authors": [ "François Bouchut", "Gianluca Crippa" ], "journal": "Journal of Hyperbolic Differential Equations 10, 2 (2013) 235-282", "doi": "10.1142/S0219891613500100", "categories": [ "math.AP", "math.FA" ], "abstract": "We prove quantitative estimates on flows of ordinary differential equations with vector field with gradient given by a singular integral of an $L^1$ function. Such estimates allow to prove existence, uniqueness, quantitative stability and compactness for the flow, going beyond the $BV$ theory. We illustrate the related well-posedness theory of Lagrangian solutions to the continuity and transport equations.", "revisions": [ { "version": "v1", "updated": "2012-08-31T06:05:58.000Z" } ], "analyses": { "keywords": [ "vector field", "singular integral", "lagrangian flows", "ordinary differential equations", "transport equations" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1208.6374B" } } }