{ "id": "1208.6195", "version": "v2", "published": "2012-08-30T14:58:28.000Z", "updated": "2012-10-15T16:27:14.000Z", "title": "The growth rate and dimension theory of beta-expansions", "authors": [ "Simon Baker" ], "journal": "Fund. Math. 219 (2012), 271-285", "categories": [ "math.DS", "math.NT" ], "abstract": "In a recent paper of Feng and Sidorov they show that for $\\beta\\in(1,\\frac{1+\\sqrt{5}}{2})$ the set of $\\beta$-expansions grows exponentially for every $x\\in(0,\\frac{1}{\\beta-1})$. In this paper we study this growth rate further. We also consider the set of $\\beta$-expansions from a dimension theory perspective.", "revisions": [ { "version": "v2", "updated": "2012-10-15T16:27:14.000Z" } ], "analyses": { "subjects": [ "37A45", "37C45" ], "keywords": [ "growth rate", "beta-expansions", "dimension theory perspective", "expansions grows" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1208.6195B" } } }