{ "id": "1208.5832", "version": "v1", "published": "2012-08-29T04:21:46.000Z", "updated": "2012-08-29T04:21:46.000Z", "title": "Fourier Multipliers and Littlewood-Paley For Modulation Spaces", "authors": [ "Parasar Mohanty", "Saurabh Shrivastava" ], "comment": "17 pages", "categories": [ "math.CA", "math.FA" ], "abstract": "In this paper we have studied Fourier multipliers and Littlewood-Paley square functions in the context of modulation spaces. We have also proved that any bounded linear operator from modulation space $\\mathcal{M}_{p,q}(\\R^n), 1\\leq p,q\\leq \\infty,$ into itself possesses an $l_2-$valued extension. This is an analogue of a well known result due to Marcinkiewicz and Zygmund on classical $L^p-$spaces.", "revisions": [ { "version": "v1", "updated": "2012-08-29T04:21:46.000Z" } ], "analyses": { "subjects": [ "42A45", "42B15", "42B25", "42B35" ], "keywords": [ "modulation space", "fourier multipliers", "littlewood-paley square functions", "bounded linear operator", "valued extension" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1208.5832M" } } }