{ "id": "1208.4480", "version": "v2", "published": "2012-08-22T11:36:55.000Z", "updated": "2012-12-28T03:22:34.000Z", "title": "Geometric resonances in the magnetoresistance of hexagonal lateral superlattices", "authors": [ "Yuto Kato", "Akira Endo", "Shingo Katsumoto", "Yasuhiro Iye" ], "comment": "11 pages, 9 figures, minor revision", "journal": "Phys. Rev. B 86, 235315 (2012)", "doi": "10.1103/PhysRevB.86.235315", "categories": [ "cond-mat.mes-hall" ], "abstract": "We have measured magnetoresistance of hexagonal lateral superlattices. We observe three types of oscillations engendered by periodic potential modulation having hexagonal-lattice symmetry: amplitude modulation of the Shubnikov-de Haas oscillations, commensurability oscillations, and the geometric resonances of open orbits generated by Bragg reflections. The latter two reveal the presence of two characteristic periodicities, sqrt{3} a / 2 and a / 2, inherent in a hexagonal lattice with the lattice constant a. The formation of the hexagonal-superlattice minibands manifested by the observation of open orbits marks the first step toward realizing massless Dirac fermions in semiconductor 2DEGs.", "revisions": [ { "version": "v2", "updated": "2012-12-28T03:22:34.000Z" } ], "analyses": { "subjects": [ "73.43.Qt", "73.23.-b", "73.21.Cd" ], "keywords": [ "hexagonal lateral superlattices", "geometric resonances", "magnetoresistance", "shubnikov-de haas oscillations", "periodic potential modulation" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Physical Review B", "year": 2012, "month": "Dec", "volume": 86, "number": 23, "pages": 235315 }, "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012PhRvB..86w5315K" } } }