{ "id": "1208.3965", "version": "v1", "published": "2012-08-20T10:30:05.000Z", "updated": "2012-08-20T10:30:05.000Z", "title": "The least eigenvalues of signless Laplacian of non-bipartite graphs with pendant vertices", "authors": [ "Yi-Zheng Fan", "Yi Wang", "Huan Guo" ], "journal": "Discrete Mathematics,2013, 313(7), 903-909", "doi": "10.1016/j.disc.2013.01.002", "categories": [ "math.CO" ], "abstract": "In this paper we determine the graph whose least eigenvalue of signless Laplacian attains the minimum or maximum among all connected non-bipartite graphs of fixed order and given number of pendant vertices. Thus we obtain a lower bound and an upper bound for the least eigenvalue of signless Laplacian of a graph in terms of the number of pendent vertices.", "revisions": [ { "version": "v1", "updated": "2012-08-20T10:30:05.000Z" } ], "analyses": { "subjects": [ "05C50", "15A18" ], "keywords": [ "pendant vertices", "eigenvalue", "pendent vertices", "upper bound", "signless laplacian attains" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1208.3965F" } } }