{ "id": "1208.3801", "version": "v3", "published": "2012-08-19T02:20:57.000Z", "updated": "2014-06-11T12:57:37.000Z", "title": "Metric dimension for random graphs", "authors": [ "B. Bollobas", "D. Mitsche", "P. Pralat" ], "categories": [ "math.CO" ], "abstract": "The metric dimension of a graph $G$ is the minimum number of vertices in a subset $S$ of the vertex set of $G$ such that all other vertices are uniquely determined by their distances to the vertices in $S$. In this paper we investigate the metric dimension of the random graph $G(n,p)$ for a wide range of probabilities $p=p(n)$.", "revisions": [ { "version": "v3", "updated": "2014-06-11T12:57:37.000Z" } ], "analyses": { "keywords": [ "metric dimension", "random graph", "minimum number", "vertex set" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1208.3801B" } } }