{ "id": "1208.3558", "version": "v2", "published": "2012-08-17T09:14:08.000Z", "updated": "2013-09-09T11:05:33.000Z", "title": "Reduced holonomy and Hodge theory", "authors": [ "Gil R. Cavalcanti" ], "comment": "This paper was incorporated into arxiv:1203.0493v4", "categories": [ "math.DG" ], "abstract": "We develop Hodge theory for a Riemannian manifold $(M,g)$ with a background closed 3-form, H. Precisely, we prove that if the metric connections with torsion $\\pm H$ have holonomy groups $G_\\pm$, then the $d^H$-Laplacian preserves the irreducible representations of the Lie algebras of the holonomy groups on the space of forms.", "revisions": [ { "version": "v2", "updated": "2013-09-09T11:05:33.000Z" } ], "analyses": { "subjects": [ "58A14", "58A10", "58A12" ], "keywords": [ "hodge theory", "reduced holonomy", "holonomy groups", "metric connections", "riemannian manifold" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }