{ "id": "1208.3317", "version": "v2", "published": "2012-08-16T08:59:01.000Z", "updated": "2015-03-29T20:17:32.000Z", "title": "Rational curves on \\bar{M}_g and K3 surfaces", "authors": [ "Luca Benzo" ], "comment": "published version, revisions in the exposition, minor mistakes corrected", "journal": "International Mathematics Research Notices, Volume 15 (2014), pp. 4179-4214", "doi": "10.1093/imrn/rnt067", "categories": [ "math.AG" ], "abstract": "Let $(S,L)$ be a smooth primitively polarized K3 surface of genus $g$ and $f:X \\rightarrow \\mathbb{P}^1$ the fibration defined by a linear pencil in $|L|$. For $f$ general and $g \\geq 7$, we work out the splitting type of the locally free sheaf $\\Psi^{*}_f T_{{\\overline{M}}_g}$, where $\\Psi_f$ is the modular morphism associated to $f$. We show that this splitting type encodes the fundamental geometrical information attached to Mukai's projection map $\\mathcal{P}_g \\rightarrow \\overline{\\mathcal{M}}_g$, where $\\mathcal{P}_g$ is the stack parameterizing pairs $(S,C)$ with $(S,L)$ as above and $C \\in |L|$ a stable curve. Moreover, we work out conditions on a fibration $f$ to induce a modular morphism $\\Psi_f$ such that the normal sheaf $N_{\\Psi_f}$ is locally free.", "revisions": [ { "version": "v1", "updated": "2012-08-16T08:59:01.000Z", "abstract": "We work out the splitting type of the locally free sheaf $\\Psi^{*}_f T_{{\\bar{M}}_g}$, $g \\geq 7$, where $\\Psi_f$ is the modular morphism associated to a fibration $f:X \\rightarrow \\mathbb{P}^1$ whose general fibre is a general curve in $\\mathcal{K}_g$, the locus of smooth curves of genus $g$ lying on a K3 surface. We show that this splitting type encodes the fundamental geometrical informations attached to Mukai's projection map $\\mathcal{P}_g \\rightarrow \\mathcal{K}_g$. Moreover we work out conditions on a fibration $f$ to induce a modular morphism $\\Psi_f$ such that the normal sheaf $N_{\\Psi_f}$ is locally free.", "comment": "35 pages", "journal": null }, { "version": "v2", "updated": "2015-03-29T20:17:32.000Z" } ], "analyses": { "subjects": [ "14J28", "14H10", "14D06", "14D15" ], "keywords": [ "k3 surface", "rational curves", "modular morphism", "splitting type", "mukais projection map" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 35, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1208.3317B" } } }