{ "id": "1208.3179", "version": "v4", "published": "2012-08-15T19:04:24.000Z", "updated": "2013-09-18T15:37:37.000Z", "title": "The Breuil-Mézard conjecture for potentially Barsotti-Tate representations", "authors": [ "Toby Gee", "Mark Kisin" ], "comment": "Minor expository changes", "categories": [ "math.NT" ], "abstract": "We prove the Breuil-M\\'ezard conjecture for 2-dimensional potentially Barsotti-Tate representations of the absolute Galois group G_K, K a finite extension of Q_p, for any p>2 (up to the question of determining precise values for the multiplicities that occur). In the case that K/Q_p is unramified, we also determine most of the multiplicities. We then apply these results to the weight part of Serre's conjecture, proving a variety of results including the Buzzard-Diamond-Jarvis conjecture.", "revisions": [ { "version": "v4", "updated": "2013-09-18T15:37:37.000Z" } ], "analyses": { "keywords": [ "potentially barsotti-tate representations", "breuil-mézard conjecture", "absolute galois group", "breuil-mezard conjecture", "weight part" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1208.3179G" } } }