{ "id": "1208.2633", "version": "v1", "published": "2012-08-13T16:33:59.000Z", "updated": "2012-08-13T16:33:59.000Z", "title": "A Note on the Mean Value of $L$--functions in Function Fields", "authors": [ "Julio Andrade" ], "comment": "Accepted for publication in International Journal of Number Theory", "categories": [ "math.NT" ], "abstract": "An asymptotic formula for the sum $\\sum L(1,\\chi)$ is established for a family of hyperelliptic curves of genus $g$ over a fixed finite field $\\mathbb{F}_q$ as $g\\rightarrow\\infty$ making use of the analogue of the approximate functional equation for such $L$--functions. As a corollary, we obtain a formula for the average of the class number of the associated rings $\\mathbb{F}_{q}[T,sqrt{D}]$.", "revisions": [ { "version": "v1", "updated": "2012-08-13T16:33:59.000Z" } ], "analyses": { "subjects": [ "11G20", "11R29", "14G10" ], "keywords": [ "function fields", "mean value", "approximate functional equation", "class number", "asymptotic formula" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1208.2633A" } } }