{ "id": "1208.2084", "version": "v2", "published": "2012-08-10T04:14:52.000Z", "updated": "2013-07-27T14:33:15.000Z", "title": "On orbits in double flag varieties for symmetric pairs", "authors": [ "Xuhua He", "Kyo Nishiyama", "Hiroyuki Ochiai", "Yoshiki Oshima" ], "comment": "47 pages, 3 tables; add all the details of the classification", "categories": [ "math.RT" ], "abstract": "Let $ G $ be a connected, simply connected semisimple algebraic group over the complex number field, and let $ K $ be the fixed point subgroup of an involutive automorphism of $ G $ so that $ (G, K) $ is a symmetric pair. We take parabolic subgroups $ P $ of $ G $ and $ Q $ of $ K $ respectively and consider the product of partial flag varieties $ G/P $ and $ K/Q $ with diagonal $ K $-action, which we call a \\emph{double flag variety for symmetric pair}. It is said to be \\emph{of finite type} if there are only finitely many $ K $-orbits on it. In this paper, we give a parametrization of $ K $-orbits on $ G/P \\times K/Q $ in terms of quotient spaces of unipotent groups without assuming the finiteness of orbits. If one of $ P \\subset G $ or $ Q \\subset K $ is a Borel subgroup, the finiteness of orbits is closely related to spherical actions. In such cases, we give a complete classification of double flag varieties of finite type, namely, we obtain classifications of $ K $-spherical flag varieties $ G/P $ and $ G $-spherical homogeneous spaces $ G/Q $.", "revisions": [ { "version": "v2", "updated": "2013-07-27T14:33:15.000Z" } ], "analyses": { "subjects": [ "14M15", "53C35", "14M17" ], "keywords": [ "flag variety", "double flag varieties", "symmetric pair", "finite type", "partial flag varieties" ], "note": { "typesetting": "TeX", "pages": 47, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1208.2084H" } } }