{ "id": "1208.1958", "version": "v1", "published": "2012-08-09T15:52:43.000Z", "updated": "2012-08-09T15:52:43.000Z", "title": "Spectral Radius and Degree Sequence of a Graph", "authors": [ "Chia-an Liu", "Chih-wen Weng" ], "categories": [ "math.CO" ], "abstract": "Let G be a simple connected graph of order n with degree sequence d_1, d_2, ..., d_n in non-increasing order. The spectral radius rho(G) of G is the largest eigenvalue of its adjacency matrix. For each positive integer L at most n, we give a sharp upper bound for rho(G) by a function of d_1, d_2, ..., d_L, which generalizes a series of previous results.", "revisions": [ { "version": "v1", "updated": "2012-08-09T15:52:43.000Z" } ], "analyses": { "keywords": [ "degree sequence", "sharp upper bound", "spectral radius rho", "largest eigenvalue", "adjacency matrix" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1208.1958L" } } }