{ "id": "1208.1825", "version": "v1", "published": "2012-08-09T07:04:11.000Z", "updated": "2012-08-09T07:04:11.000Z", "title": "On the fast Khintchine spectrum in continued fractions", "authors": [ "Fan Ai-Hua", "Lingmin Liao", "Bao-Wei Wang", "Jun Wu" ], "comment": "10 pages", "categories": [ "math.DS" ], "abstract": "For $x\\in [0,1)$, let $x=[a_1(x), a_2(x),...]$ be its continued fraction expansion with partial quotients ${a_n(x), n\\ge 1}$. Let $\\psi : \\mathbb{N} \\rightarrow \\mathbb{N}$ be a function with $\\psi(n)/n\\to \\infty$ as $n\\to \\infty$. In this note, the fast Khintchine spectrum, i.e., the Hausdorff dimension of the set $$ E(\\psi):=\\Big{x\\in [0,1): \\lim_{n\\to\\infty}\\frac{1}{\\psi(n)}\\sum_{j=1}^n\\log a_j(x)=1\\Big} $$ is completely determined without any extra condition on $\\psi$.", "revisions": [ { "version": "v1", "updated": "2012-08-09T07:04:11.000Z" } ], "analyses": { "keywords": [ "fast khintchine spectrum", "extra condition", "partial quotients", "hausdorff dimension", "continued fraction expansion" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1208.1825A" } } }