{ "id": "1208.1076", "version": "v1", "published": "2012-08-06T03:24:17.000Z", "updated": "2012-08-06T03:24:17.000Z", "title": "Linear preservers and quantum information science", "authors": [ "Ajda Fosner", "Zejun Huang", "Chi-Kwong Li", "Nung-Sing Sze" ], "comment": "13 pages", "categories": [ "quant-ph", "math.FA" ], "abstract": "Let $m,n\\ge 2$ be positive integers, $M_m$ the set of $m\\times m$ complex matrices and $M_n$ the set of $n\\times n$ complex matrices. Regard $M_{mn}$ as the tensor space $M_m\\otimes M_n$. Suppose $|\\cdot|$ is the Ky Fan $k$-norm with $1 \\le k \\le mn$, or the Schatten $p$-norm with $1 \\le p \\le \\infty$ ($p\\ne 2$) on $M_{mn}$. It is shown that a linear map $\\phi: M_{mn} \\rightarrow M_{mn}$ satisfying $$|A\\otimes B| = |\\phi(A\\otimes B)|$$ for all $A \\in M_m$ and $B \\in M_n$ if and only if there are unitary $U, V \\in M_{mn}$ such that $\\phi$ has the form $A\\otimes B \\mapsto U(\\varphi_1(A) \\otimes \\varphi_2(B))V$, where $\\varphi_i(X)$ is either the identity map $X \\mapsto X$ or the transposition map $X \\mapsto X^t$. The results are extended to tensor space $M_{n_1} \\otimes ... \\otimes M_{n_m}$ of higher level. The connection of the problem to quantum information science is mentioned.", "revisions": [ { "version": "v1", "updated": "2012-08-06T03:24:17.000Z" } ], "analyses": { "subjects": [ "15A69", "15A86", "15B57", "15A18" ], "keywords": [ "quantum information science", "linear preservers", "tensor space", "complex matrices", "higher level" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1208.1076F" } } }