{ "id": "1208.0979", "version": "v1", "published": "2012-08-05T04:23:13.000Z", "updated": "2012-08-05T04:23:13.000Z", "title": "A New Fixed Point Theorem for Non-expansive Mappings and Its Application", "authors": [ "Chunyan Yang" ], "categories": [ "math.FA" ], "abstract": "We use $KKM$ theorem to prove the existence of a new fixed point theorem for non-expansive mapping:Let M be a bounded closed convex subset of Hilbert space H, and $A:M\\rightarrow M$ be a non-expansive mapping, then exists a fixed point of A in M, we also apply this Theorem to study the solution for an integral equation,we can weak some conditions comparing with Banach's contraction principe.", "revisions": [ { "version": "v1", "updated": "2012-08-05T04:23:13.000Z" } ], "analyses": { "keywords": [ "fixed point theorem", "non-expansive mapping", "application", "banachs contraction principe", "hilbert space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1208.0979Y" } } }