{ "id": "1208.0859", "version": "v2", "published": "2012-08-03T22:02:52.000Z", "updated": "2013-07-09T15:47:06.000Z", "title": "Rotation sets with nonempty interior and transitivity in the universal covering", "authors": [ "Nancy Guelman", "Andres Koropecki", "Fabio Armando Tal" ], "comment": "11 pages, 4 figures. Incorporates referee's corrections. To appear in Ergod. Th. & Dynam. Syst", "categories": [ "math.DS" ], "abstract": "Let $f$ be a transitive homeomorphism of the two-dimensional torus in the homotopy class of the identity. We show that a lift of $f$ to the universal covering is transitive if and only if the rotation set of the lift contains the origin in its interior.", "revisions": [ { "version": "v2", "updated": "2013-07-09T15:47:06.000Z" } ], "analyses": { "subjects": [ "37E45", "37E30" ], "keywords": [ "rotation set", "nonempty interior", "universal covering", "transitivity", "lift contains" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1208.0859G" } } }