{ "id": "1208.0783", "version": "v1", "published": "2012-08-03T16:03:48.000Z", "updated": "2012-08-03T16:03:48.000Z", "title": "Some Affine Invariants Revisited", "authors": [ "Alina Stancu" ], "comment": "15 pages", "categories": [ "math.FA" ], "abstract": "We present several sharp inequalities for the SL(n) invariant $\\Omega_{2,n}(K)$ introduced in our earlier work on centro-affine invariants for smooth convex bodies containing the origin. A connection arose with the Paouris-Werner invariant $\\Omega_K$ defined for convex bodies $K$ whose centroid is at the origin. We offer two alternative definitions for $\\Omega_K$ when $K \\in C^2_+$. The technique employed prompts us to conjecture that any SL(n) invariant of convex bodies with continuous and positive centro-affine curvature function can be obtained as a limit of normalized $p$-affine surface areas of the convex body.", "revisions": [ { "version": "v1", "updated": "2012-08-03T16:03:48.000Z" } ], "analyses": { "subjects": [ "52A40", "52A38" ], "keywords": [ "convex body", "affine surface areas", "positive centro-affine curvature function", "centro-affine invariants" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1208.0783S" } } }