{ "id": "1208.0473", "version": "v2", "published": "2012-08-02T13:02:59.000Z", "updated": "2012-10-31T17:08:56.000Z", "title": "Biminimal properly immersed submanifolds in complete Riemannian manifolds of non-positive curvature", "authors": [ "Shun Maeta" ], "comment": "11 pages", "categories": [ "math.DG" ], "abstract": "We consider a non-negative biminimal properly immersed submanifold $M$ (that is, a biminimal properly immersed submanifold with $\\lambda\\geq0$) in a complete Riemannian manifold $N$ with non-positive sectional curvature. Assume that the sectional curvature $K^N$ of $N$ satisfies $K^N\\geq-L(1+{\\rm dist}_N(\\cdot, q_0)^2)^{\\frac{\\alpha}{2}}$ for some $L>0,$ $2>\\alpha \\geq 0$ and $q_0\\in N$. Then, we prove that $M$ is minimal. As a corollary, we give that any biharmonic properly immersed submanifold in a hyperbolic space is minimal. These results give affirmative partial answers to the global version of generalized Chen's conjecture.", "revisions": [ { "version": "v2", "updated": "2012-10-31T17:08:56.000Z" } ], "analyses": { "subjects": [ "58E20", "53C43" ], "keywords": [ "complete riemannian manifold", "non-positive curvature", "sectional curvature", "hyperbolic space", "non-negative biminimal properly immersed submanifold" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1208.0473M" } } }