{ "id": "1207.6480", "version": "v2", "published": "2012-07-27T08:05:41.000Z", "updated": "2017-03-23T07:51:27.000Z", "title": "Flat solutions of the 1-Laplacian equation", "authors": [ "Luigi Orsina", "Augusto C. Ponce" ], "comment": "Dedicated to Jean Mawhin. Revised and extended version of a note written by the authors in 2012", "categories": [ "math.AP" ], "abstract": "For every $f \\in L^N(\\Omega)$ defined in an open bounded subset $\\Omega$ of $\\mathbb{R}^N$, we prove that a solution $u \\in W_0^{1, 1}(\\Omega)$ of the $1$-Laplacian equation ${-}\\mathrm{div}{(\\frac{\\nabla u}{|\\nabla u|})} = f$ in $\\Omega$ satisfies $\\nabla u = 0$ on a set of positive Lebesgue measure. The same property holds if $f \\not\\in L^N(\\Omega)$ has small norm in the Marcinkiewicz space of weak-$L^{N}$ functions or if $u$ is a BV minimizer of the associated energy functional. The proofs rely on Stampacchia's truncation method.", "revisions": [ { "version": "v1", "updated": "2012-07-27T08:05:41.000Z", "title": "Nonexistence of solutions for the 1 Laplacian with L^N data", "abstract": "We prove that the 1 Laplacian equation - \\Delta_1 u = f in an open set of R^N cannot have a solution in the Sobolev space W_0^{1, 1} for any datum in L^N", "comment": null, "journal": null, "doi": null }, { "version": "v2", "updated": "2017-03-23T07:51:27.000Z" } ], "analyses": { "subjects": [ "35J70", "35J25", "35J62", "35J92" ], "keywords": [ "nonexistence", "open set", "laplacian equation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1207.6480O" } } }