{ "id": "1207.5860", "version": "v3", "published": "2012-07-25T01:12:15.000Z", "updated": "2013-07-18T05:48:14.000Z", "title": "Finite Dimensional Representations of Khovanov-Lauda-Rouquier algebras I: Finite Type", "authors": [ "Peter J. McNamara" ], "comment": "21pp", "categories": [ "math.RT", "math.QA" ], "abstract": "We classify simple representations of Khovanov-Lauda-Rouquier algebras in finite type. The classification is in terms of a standard family of representations that is shown to yield the dual PBW basis in the Grothendieck group. Finally, we prove a conjecture describing the global dimension of these algebras.", "revisions": [ { "version": "v3", "updated": "2013-07-18T05:48:14.000Z" } ], "analyses": { "keywords": [ "finite dimensional representations", "finite type", "khovanov-lauda-rouquier algebras", "dual pbw basis", "classify simple representations" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1207.5860M" } } }