{ "id": "1207.5591", "version": "v1", "published": "2012-07-24T05:31:58.000Z", "updated": "2012-07-24T05:31:58.000Z", "title": "Long time solutions for wave maps with large data", "authors": [ "Jinhua Wang", "Pin Yu" ], "comment": "41 pages, 3 figures", "categories": [ "math.AP" ], "abstract": "For 2 + 1 dimensional wave maps with $\\mathbb{S}^2$ as the target, we show that for all positive numbers $T_0 > 0$ and $E_0 > 0$, there exist Cauchy initial data with energy at least $E_0$, so that the solution's life-span is at least $[0,T_0]$. We assume neither symmetry nor closeness to harmonic maps.", "revisions": [ { "version": "v1", "updated": "2012-07-24T05:31:58.000Z" } ], "analyses": { "keywords": [ "long time solutions", "large data", "dimensional wave maps", "cauchy initial data", "harmonic maps" ], "note": { "typesetting": "TeX", "pages": 41, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1207.5591W" } } }