{ "id": "1207.5500", "version": "v1", "published": "2012-07-23T19:56:29.000Z", "updated": "2012-07-23T19:56:29.000Z", "title": "The replica symmetric solution for Potts models on d-regular graphs", "authors": [ "Amir Dembo", "Andrea Montanari", "Allan Sly", "Nike Sun" ], "comment": "23 pages", "categories": [ "math.PR", "cond-mat.stat-mech" ], "abstract": "We provide an explicit formula for the limiting free energy density (log-partition function divided by the number of vertices) for ferromagnetic Potts models on uniformly sparse graph sequences converging locally to the d-regular tree for d even, covering all temperature regimes. This formula coincides with the Bethe free energy functional evaluated at a suitable fixed point of the belief propagation recursion on the d-regular tree, the so-called replica symmetric solution. For uniformly random d-regular graphs we further show that the replica symmetric Bethe formula is an upper bound for the asymptotic free energy for any model with permissive interactions.", "revisions": [ { "version": "v1", "updated": "2012-07-23T19:56:29.000Z" } ], "analyses": { "subjects": [ "82B20", "82B23", "05C80", "60K35" ], "keywords": [ "replica symmetric solution", "potts models", "d-regular graphs", "free energy functional", "sparse graph sequences converging" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1207.5500D" } } }