{ "id": "1207.5201", "version": "v1", "published": "2012-07-22T06:32:40.000Z", "updated": "2012-07-22T06:32:40.000Z", "title": "Characterization of the monotonicity by the inequality", "authors": [ "Dinh Trung Hoa", "Hiroyuki Osaka", "Jun Tomiyama" ], "comment": "10 pages", "categories": [ "math.FA", "math.OA" ], "abstract": "Let $\\varphi$ be a normal state on the algebra $B(H)$ of all bounded operators on a Hilbert space $H$, $f$ a strictly positive, continuous function on $(0, \\infty)$, and let $g$ be a function on $(0, \\infty)$ defined by $g(t) = \\frac{t}{f(t)}$. We will give characterizations of matrix and operator monotonicity by the following generalized Powers-St\\ormer inequality: $$ \\varphi(A + B) - \\varphi(|A - B|) \\leq 2\\varphi(f(A)^1/2g(B)f(A)^1/2), $$ whenever $A, B$ are positive invertible operators in $B(H).$", "revisions": [ { "version": "v1", "updated": "2012-07-22T06:32:40.000Z" } ], "analyses": { "subjects": [ "46L30", "15A45" ], "keywords": [ "characterization", "inequality", "normal state", "hilbert space" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1207.5201H" } } }