{ "id": "1207.4531", "version": "v1", "published": "2012-07-19T01:36:01.000Z", "updated": "2012-07-19T01:36:01.000Z", "title": "Fixed point properties for semigroups of nonlinear mappings and amenability", "authors": [ "A. T. -M. Lau", "Yong Zhang" ], "comment": "J. Funct. Anal., to appear", "categories": [ "math.FA" ], "abstract": "In this paper we study fixed point properties for semitopological semigroup of nonexpansive mappings on a bounded closed convex subset of a Banach space. We also study a Schauder fixed point property for a semitopological semigroup of continuous mappings on a compact convex subset of a separated locally convex space. Such semigroups properly include the class of extremely left amenable semitopological semigroups, the free commutative semigroup on one generator and the bicyclic semigroup $S_1 = < a, b: ab = 1 >$.", "revisions": [ { "version": "v1", "updated": "2012-07-19T01:36:01.000Z" } ], "analyses": { "subjects": [ "46H20", "43A20", "43A10", "46H25", "16E40" ], "keywords": [ "nonlinear mappings", "left amenable semitopological semigroups", "amenability", "compact convex subset", "schauder fixed point property" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1207.4531L" } } }