{ "id": "1207.4514", "version": "v1", "published": "2012-07-18T22:30:23.000Z", "updated": "2012-07-18T22:30:23.000Z", "title": "$2m$-Weak amenability of group algebras", "authors": [ "Yong Zhang" ], "comment": "J. Math Anal. Appl. to appear", "doi": "10.1016/j.jmaa.2012.06.037ear", "categories": [ "math.FA" ], "abstract": "A common fixed point property for semigroups is applied to show that the group algebra $L^1(G)$ of a locally compact group $G$ is $2m$-weakly amenable for each integer $m\\geq 1$.", "revisions": [ { "version": "v1", "updated": "2012-07-18T22:30:23.000Z" } ], "analyses": { "subjects": [ "43A20", "46H20", "43A10" ], "keywords": [ "group algebra", "weak amenability", "common fixed point property", "locally compact group" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1207.4514Z" } } }