{ "id": "1207.4016", "version": "v2", "published": "2012-07-17T14:42:42.000Z", "updated": "2013-03-19T10:19:53.000Z", "title": "Arnold diffusion in nearly integrable Hamiltonian systems", "authors": [ "Chong-Qing Cheng" ], "categories": [ "math.DS" ], "abstract": "In this paper, Arnold diffusion is proved to be generic phenomenon in nearly integrable convex Hamiltonian systems with three degrees of freedom: $$ H(x,y)=h(y)+\\epsilon P(x,y), \\qquad x\\in\\mathbb{T}^3,\\ y\\in\\mathbb{R}^3. $$ Under typical perturbation $\\epsilon P$, the system admits \"connecting\" orbit that passes through any two prescribed small balls in the same energy level $H^{-1}(E)$ provided $E$ is bigger than the minimum of the average action, namely, $E>\\min\\alpha$.", "revisions": [ { "version": "v2", "updated": "2013-03-19T10:19:53.000Z" } ], "analyses": { "keywords": [ "integrable hamiltonian systems", "arnold diffusion", "integrable convex hamiltonian systems", "generic phenomenon", "system admits" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1207.4016C" } } }