{ "id": "1207.4014", "version": "v2", "published": "2012-07-17T14:38:44.000Z", "updated": "2012-08-22T13:51:00.000Z", "title": "Critical line of the $Φ^4$ theory on a simple cubic lattice in the local potential approximation", "authors": [ "Jean-Michel Caillol" ], "comment": "Minor revisions: 15 pages, 4 figures, 3 tables", "journal": "Nuclear Physics B 865, 291 (2012)", "categories": [ "cond-mat.stat-mech", "hep-lat" ], "abstract": "We establish the critical line of the one-component $\\Phi^4$ (or Landau-Ginzburg) model on the simple cubic lattice in three dimensions. Our study is performed in the framework of the non-perturbative renormalization group in the local potential approximation. Soft as well as ultra-sharp infra-red regulators are both considered. While the latter gives poor results, the critical line given by the soft cut-off compares well with the Monte Carlo simulations data of Hasenbusch (J. Phys. A : Math. Gen. 32 (1999) 4851) with a relative error of, at worst, $\\sim 3. 10^{-3}$ on published points (critical parameters) of this line.", "revisions": [ { "version": "v2", "updated": "2012-08-22T13:51:00.000Z" } ], "analyses": { "subjects": [ "05.50.+q", "64.60.De", "02.30.Jr", "05.10.Cc", "02.60.Lj" ], "keywords": [ "local potential approximation", "simple cubic lattice", "critical line", "monte carlo simulations data", "soft cut-off compares" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier", "journal": "Nuclear Physics B", "doi": "10.1016/j.nuclphysb.2012.07.032", "year": 2012, "month": "Dec", "volume": 865, "number": 2, "pages": 291 }, "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "inspire": 1122855, "adsabs": "2012NuPhB.865..291C" } } }