{ "id": "1207.3580", "version": "v1", "published": "2012-07-16T05:28:10.000Z", "updated": "2012-07-16T05:28:10.000Z", "title": "The shape of the $(2+1)$D SOS surface above a wall", "authors": [ "Pietro Caputo", "Eyal Lubetzky", "Fabio Martinelli", "Allan Sly", "Fabio Lucio Toninelli" ], "comment": "5 pages", "journal": "Comptes Rendus Mathematique 350(13-14):703-706, 2012", "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "We give a full description for the shape of the classical (2+1)\\Dim Solid-On-Solid model above a wall, introduced by Temperley (1952). On an $L\\times L$ box at a large inverse-temperature $\\beta$ the height of most sites concentrates on a single level $h = \\lfloor (1/4\\beta)\\log L\\rfloor$ for most values of $L$. For a sequence of diverging boxes the ensemble of level lines of heights $(h,h-1,...)$ has a scaling limit in Hausdorff distance iff the fractional parts of $(1/4\\beta)\\log L$ converge to a noncritical value. The scaling limit is explicitly given by nested distinct loops formed via translates of Wulff shapes. Finally, the $h$-level lines feature $L^{1/3+o(1)}$ fluctuations from the side boundaries.", "revisions": [ { "version": "v1", "updated": "2012-07-16T05:28:10.000Z" } ], "analyses": { "subjects": [ "60K35", "82C22" ], "keywords": [ "sos surface", "scaling limit", "level lines feature", "hausdorff distance", "solid-on-solid model" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1207.3580C" } } }