{ "id": "1207.3493", "version": "v1", "published": "2012-07-15T11:19:54.000Z", "updated": "2012-07-15T11:19:54.000Z", "title": "Codes for Square-Tiled Surfaces", "authors": [ "Kuo-Chiang Tan" ], "categories": [ "math.DS" ], "abstract": "In this paper, we use permutation elements to record cylinder decompositions of a square-tiled surface $X$. Collecting all such possible permutation elements that record cylinder decompositions, we can enumerate the $SL_2(\\mathbb{Z})$ orbit of a given surface $X$ and give a method to determine whether or not a matrix $A\\in SL_2(\\mathbb{Z})$ is the differential of an affine diffeomorphism of $X$.", "revisions": [ { "version": "v1", "updated": "2012-07-15T11:19:54.000Z" } ], "analyses": { "keywords": [ "square-tiled surface", "record cylinder decompositions", "permutation elements", "affine diffeomorphism", "differential" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1207.3493T" } } }