{ "id": "1207.3008", "version": "v2", "published": "2012-07-12T16:04:57.000Z", "updated": "2013-10-24T12:00:38.000Z", "title": "Embedding relatively hyperbolic groups in products of trees", "authors": [ "John M. Mackay", "Alessandro Sisto" ], "comment": "v1: 18 pages; v2: 20 pages, minor changes", "journal": "Alg. Geom. Top., Volume 13 (2013) 2261-2282", "doi": "10.2140/agt.2013.13.2261", "categories": [ "math.GT", "math.GR" ], "abstract": "We show that a relatively hyperbolic group quasi-isometrically embeds in a product of finitely many trees if the peripheral subgroups do, and we provide an estimate on the minimal number of trees needed. Applying our result to the case of 3-manifolds, we show that fundamental groups of closed 3-manifolds have linearly controlled asymptotic dimension at most 8. To complement this result, we observe that fundamental groups of Haken 3-manifolds with non-empty boundary have asymptotic dimension 2.", "revisions": [ { "version": "v2", "updated": "2013-10-24T12:00:38.000Z" } ], "analyses": { "subjects": [ "20F65", "20F69" ], "keywords": [ "embedding relatively hyperbolic groups", "fundamental groups", "relatively hyperbolic group quasi-isometrically embeds", "peripheral subgroups", "non-empty boundary" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1207.3008M" } } }