{ "id": "1207.2872", "version": "v3", "published": "2012-07-12T08:30:44.000Z", "updated": "2013-12-03T03:36:45.000Z", "title": "The topological complexity of Cantor attractors for unimodal interval maps", "authors": [ "Simin Li", "Weixiao Shen" ], "comment": "33 pages", "categories": [ "math.DS" ], "abstract": "For a non-flat $C^3$ unimodal map with a Cantor attractor, we show that for any open cover $\\mathcal U$ of this attractor, the complexity function $p(\\mathcal U, n)$ is of order $n\\log n$. In the appendix, we construct a non-renormalizable map with a Cantor attractor for which $p(\\mathcal{U}, n)$ is bounded from above for any open cover $\\mathcal{U}$.", "revisions": [ { "version": "v3", "updated": "2013-12-03T03:36:45.000Z" } ], "analyses": { "keywords": [ "cantor attractor", "unimodal interval maps", "topological complexity", "open cover", "complexity function" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1207.2872L" } } }